Determination of Molecular Weight

By C. L. Ogg

J. Assoc. Offic. Anal. Chemists, 49: 744-49 (1966)

Determination of Molecular Weight

By C. L. OGG (Eastern Utilization Research and Development Division, U.S. Department of Agriculture, 600 E. Mermaid Lane, Philadelphia, Pa. 19118)

An initial study, in which 23 collaborators participated, was conducted on the determination of molecular weight by the isothermal distillation (vapor pressure osmometry) method. Each used his own method and apparatus to analyze four samples in duplicate; the molecular weight ranged from 123 to 891. Results show that the chief problem is the choice of the correct solvent and reference standard and that the use of bare thermistors is questionable.

The two preliminary studies on micro methods for the determination of molecular weight (1, 2) indicated that the isothermal distillation method using thermistor probes (vapor pressure osmometer) was the preferred method. In 1959, only two collaborators, using homemade instruments, participated in the study; consequently, further work was delayed until more laboratories were equipped to perform the analyses. This year, 25 of the 60 collaborators contacted had the appropriate apparatus and wished to participate in the study; 23 reported results. Many more laboratories not on our collaborator list are now using this method for determining molecular weight.

Collaborators were asked to analyze 4 samples in duplicate, using the apparatus and techniques they would normally use in their laboratory, and to return, with their results, details of their method including solvent and reference standard used, sample weights, solvent weights or volumes, temperature, equilibration time, techniques of measurements and apparatus details. The following six samples were used in the study:

(1) benzylisothiourea hydrochloride; (2) sulfanilamide; (3) benzoic acid; (4) N(n-

octadecyl)stearamide; (5) nicotinic acid; (6) tristearin. Samples 1, 2, 3, and 4 were sent to approximately half the collaborators and samples 1, 2, 5, and 6 to the other half.

Results and Discussion

Sample 1, benzylisothiourea hydrochloride, was included among the samples to ascertain how an ionizable organic compound would be analyzed by the various collaborators. Sample 2, sulfanilamide, a compound presenting no particular problems, was also sent to all collaborators. Samples 3 and 5, benzoic and nicotinic acids, were chosen because they contain a carboxyl group which tends to cause dimerization unless strongly polar solvents are used. Samples 4 and 6, N(noctadecyl)stearamide and tristearin, were selected because of their relatively high molecular weights. Unfortunately, sample 4 was not soluble in most of the commonly used solvents. Collaborators were instructed to omit this sample if they could not find a suitable solvent.

The results of the study, shown in Table 1, include duplicate and average values for each sample analyzed by each collaborator and laboratory standard deviations, σ , calculated from the difference between duplicates. Data from samples 4 and 6 were not used in the calculation of σ because of their relatively high molecular weights and because of solubility problems with sample 4.

Interlaboratory standard deviations and coefficients of variation are shown at the bottom of Table 1 for all samples except the first. Statistical data on sample 1 would be meaningless because most collaborators did not use an ionizable reference standard. Data from collaborators 6, 19, and 25 were omitted in calculating the standard deviation for sample 3, since the molecular weight values were high because of the solvents used. The data for benzylisothiourea hydrochloride

This report of the Associate Referee was presented at the Seventy-ninth Annual Meeting of the Association of Official Agricultural Chemists, Oct. 11-14, 1965, at Washington, D.C.

(sample 1) range from 104 to 206, depending on the solvent and reference standard used. This sample contains an ionizable chloride; therefore, those collaborators who did not use a polar solvent with an ionizable reference compound obtained low results, whereas those who used an appropriate solvent and standard obtained good results ranging from 201 to 206 vs. a theoretical value of 202.7. Table 2 shows the solvent and reference compound used by each collaborator for each sample analyzed.

The values reported for sample 2, sulfanilamide, are generally good. The mean value for the 23 collaborators is 172.3 vs. 172.2, but standard deviation and coefficient of variation (c.v.) are 10 and 5.8, respectively. Comparison of the individual collaborator's values with the information in Table 3 indicates that the use of bare

thermistors might be related to the more divergent values reported. The statistical values calculated for those who used coated thermistors were $\overline{X}=170.3$, $\sigma=7.0$, and c.v. = 4.1; for those who used bare thermistors, $\overline{X}=177.7$, $\sigma=15$, and c.v. = 8.4. Eliminating the one low value of 146, the data for coated thermistors becomes $\overline{X}=171.7$, $\sigma=3.1$, and c.v. = 1.8. These values, although not conclusive, raise a question as to the advisability of using bare thermistors.

Benzoic acid (sample 3) tended to dimerize unless a highly polar solvent such as water or alcohol was used. Most collaborators used such a solvent and obtained good results. Those who used a nonpolar solvent obtained about twice the theoretical molecular weight.

Because sample 4, N(n-octadecyl)stearamide, was sparingly soluble in the commonly

Table 1. Molecular weight values obtained in collaborative study

Coll. No.	Sample 1 M.W. 202.7		Sample 2 M.W. 172.2		Sample 3 M.W. 122.1		Sample 4 M.W. 536.0		Sample 5 M.W. 123.1		Sample 6 M.W. 891.5		
													σ
		Av.		Av.		Av.		Av.		Av.		Av.	
0	204 197	201	172 172	172	123 121	122	538 538	538	125 121	123	912 870	891	3.0
0			170 176	173	123 125	124	,						-
1	188 203	196	165 169	167	124 126	125	494 510	502					7.9
2	112 109	110	175 170	173	120 121	121							2.5
3	202 206	204	180 232	206	128 142	135							21.9
6	128 122	125	172 186	179	252 243	248	556 558	557					7.2
7				187		123							
9	144 144	144	175 178	177	126 123	125							. 1.1
10	110 109	110	176 172	174	125 125	125	.*1	rg					1.5
12	108 110	109	171 169	170	121 121	121							1.1
13	203 204	204	174 174	174	122 120	121							0.9
17	117 124	124	173 175	176	123 125	124	515 524	520					2.7
17	132		179		125 122		522						
		117^{a}		174ª		119 ^a		546ª					

⁴ Calculated at infinite dilution.

Table 1. (Continued)

Coll. No.	Sample 1		Sample 2		Sample 3		Sample 4		Sample 5		Sample 6		
	M.W	M.W. 202.7		M.W. 172.2		M.W. 122.1		M.W. 536.0		M.W. 123.1		M.W. 891.5	
٠		Av.		Av.		Av.		Av.		Av.		Av.	
19		206		146		214		521					
21	140		172						125		854		
	136	138	172	172					122	124	855	855	2.0
25	123		171		195 205								
	119	121	173	172	197	199							4.8
28	140 151	146	164 169	167	117 117	117	537 522	530					5.0
35	114 116	115	167 173	170	, ⁵		:		123 124	124	791	791	2.6
36	105 107	106	172 170	171	* .				123 123	123	890 866	888	1.2
40 ·	151 164	158	166 164	165					129 137	133	839 737	788	6.3
41	203 201	202	173 170	172					124 122	123	899 876	888	1.7
48	203 202	203	164 171	168					123 124	124	875	875	2.9
54	158 150	154	170 164	167					126 120	123	728 741	736	4.7
55	97 105 110	104	166 170	168					121 125	123	913	913	4.0
59	140 138	139	175 172	173					139 138	139	822 852	836	1.5
\overline{x}				172.3		123.4		531		125.9		845	(4.1)
σ				10.0		4.6		18.3		5.5		54.4	
Coeff. of var. (%) 5.8				3.7		3.4		4.4		6.4			

used solvents, only seven values were reported. This sample was chosen so that at least one compound in the 500 molecular weight range would be included in the study; unfortunately, the Associate Referee was not aware of the solubility problem when the sample was sent to the collaborators. Although the range of molecular weights obtained seems large, the coefficient of variation, 3.4, is in line with that obtained for the other samples.

Because of the carboxyl group, molecular weight values obtained for nicotinic acid (sample 3), like benzoic acid, were too high unless a polar solvent was used. Eight of the ten values were within one molecular weight unit of the true value. Two high values caused the average to be high by 2.8 units

and the standard deviation and coefficient of variation to be 5.5 and 4.4, respectively. All but one of the values for the highest molecular weight sample, tristearin, were lower than the theoretical molecular weight, and the precision both within and between laboratories was not as good as for the other samples even on a percentage basis. This greater variability is probably due to the lower signal obtained because of the lower concentration of the tristearin solutions. Even with the limited amount of sample sent to the collaborators and the lower concentrations used, the coefficient of variation, 6.4, was only slightly higher than that obtained for the other samples.

Within-laboratory standard deviations ranged from 0.9 to 21.9 but the median

Table 2. Solvent and reference standard used for each analysis reported in Table 1

Coll. No.	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
0	water NaCl	acetone benzil	acetone benzil	CHCl ₃ benzil	EtOH-H₂O malic acid	CHCl₃ benzil
0		acetone o-anisidine	acetone anisic acid			
1	water dextrose	ethyl acetate benzil	ethyl acetate benzil	CHCl ₃ benzil		
2	water sucrose	acetone benzil	acetone benzil			
3	benzil	benzil	benzil			
6	water sucrose	water sucrose	CCl₄ dimethyl terephthalate	CCl₄ dimethyl terephthalate		
. 7		methanol benzil	methanol benzil	. •		
9	acetanilide	acetanilide	acetanilide			
10	methanol benzil	acetone benzil	acetone benzil		•	-
12	water sucrose	ethanol o-dinitrobenzene	ethanol			•
13	water dextrose	M iso-B K benzoic acid	CCl₄ benzoic acid			
17	methanol benzil	acetone benzil	acetone benzil	toluene benzil		
19	EtOH (95%) NH₂OH⋅HCI	EtOH (95%) biphenyl	CHCI ₃ biphenyl	CHCI ₃ biphenyl	•	
21	triphenyl	methane			methane	methane
25	methanol benzil	methanol benzil	benzene benzil			
28	ethanol acetanilide	ethanol acetanilide	ethanol benzoic acid	CHCl₃ triphenyl PO₄		
35	methanol benzil	methanol benzil			methanol ben <u>zil</u>	CHCl ₃ biphenyl
36	methanol benzil	methanol benzil			methanol benzil	CHCI ₃
40	ethanol benzil	acetone benzil		•	acetone benzil	benzene benzil
41	EtOH (95%) NaCl	acetone			EtOH:H ₂ O (99:1) acetanilide	CHCl₃ b
48	water s-benzil	water sugar			water sugar	MEK trimyristin
54	benzil	benzil		•	benzil	benzil
55	water ¢	acetone azobenzene			water ^a	benzene azobenzene
59	alcohol	acetone			alcohol	CHCI ₃

Methyl α-D-glucopyranoside.
 1,2,4,5-Tetrachlorobenzene.
 Pentaerythrityl tetrabenzene sulfonate.

Table 3. Technical details of method and apparatus used by collaborators

Coll.	Soln Equilib. Time	No. Drops	Read in (Min.)	Ref. Therm. Rinsed	Sens. Therm. Rinsed	Ther- mistor Coating	Volts	Calc. From AR or Calib. Curve	Approx. Concn, %	Concn, w/w or w/v
0	15	5	4	no	yes	glass	4.2	ΔR	1.2	w/w
1	20	10–1 5	3	no	no	bare		ΔR	0.3	w/v
2	15	7	2	yes	no	glass	0.5	ΔR	0.7	w/w
3	25	5	5	yes	yes	bare	0.5	CC	0.4-1.0	w/v
6	4	3	4	yes	yes	bare	1.5	CC	0.4-1.2	w/v
7	15	6-8	2	no	yes	bare	1.5	CC	0.1	w/v
9	30	7	2-5	no	yes	glass	0.5	ΔR	3.0	w/v
10	60	6	35	no	yes	glass	0.5	CC	0.2	w/w
12	15	8	5	yes	no	glass		CC	0.5	w/w
13	2–3	4–5	2	yes	yes	glass	1.5	CC	0.5	w/w
17	30	6-8	3–5	no	no	glass	0.5	ΔR	0.5 - 1.0	w/v
19	15	10	2	no	no	plastic	0.5	CC	0.3-1.0	w/w
21	5	4-5	2	yes	no	glass	0.5	ΔR	0.2	w/v
25	30	8	10	yes	yes	glass	-	CC	1.5	w/w
28	40	6	4–8	no	no	bare	0.5	CC	0.4-1.2	w/v
35	30	6–8	2-10	no	no	plastic	0.5	CC	0.25	w/v
36	15	5	3–6	yes	yes	bare	1.4	ΔR	1.3	w/w
40	3–5	4-6	2	no	no	glass	1.4	ΔR	0.2 - 1.0	w/v
41	3	5–15	Max ∆R	no ·	yes	glass	3	ΔR	1.5	w/w
48	30	5	2	no	no	glass	0.5	ΔR	0.5 - 1.0	w/w
54	15-20	6	3–6	yes	yes	bare	1.35	ΔR	0.2-0.7	w/w
55	30	8-10		yes	yes	plastic		CC	1.6	w/v
59	4	10	2 2	no	yes	glass	1.4	cc	0.5	w/v

^e Only those details which differed considerably are shown. Only collaborators 0, 12 and 41 used homemade apparatus.

value was only 2.6. High σ values seemed to be associated with the use of bare thermistors. The average σ for those collaborators using bare thermistors was 8, compared to 2.6 for those using coated thermistors.

Conclusions and Recommendation

These general statements seem warranted from the results of this study:

- 1. If a sample contains an atom or group which may ionize, check this point and choose the reference standard accordingly.
- 2. To avoid hydrogen bonding, use as polar a solvent as the sample will dissolve in
- 3. Use either glass or plastic-coated thermistors rather than bare thermistors.

It is recommended that this study be continued.

Acknowledgments

This study was made possible by the cooperation of the following collaborators:

Aluise, V. A., Hercules Powder Company, Wilmington, Del.

Anderson, R. C., The Upjohn Company, Kalamazoo, Mich.

Brancone, L. M., Lederle Laboratories, Pearl River, N.Y.

Brown, W. L., Eli Lilly and Company, Indianapolis, Ind.

Carroll, Margaret A., Smith, Kline and French Laboratories, Philadelphia, Pa.

Francis, H. J., Jr., Pennsalt Chemical Corporation, King of Prussia, Pa.

Hannan, R. B., American Cyanamid Company, Princeton, N.J.

Hofstader, R., Esso Research and Engineering Company, Bayway, N.J.

Jackson, F. L., Procter and Gamble Company, Cincinnati, Ohio

Jacobson, H., Squibb Institute for Medical Research, New Brunswick, N.J.

Lechnir, R. J., Wisconsin Alumni Research Foundation, Madison, Wis.

Mackey, T. E., E. I. duPont deNemours and Company, Inc., Wilmington, Del.

MacMullon, E. A., Merck and Company, Inc., Rahway, N.J.

The recommendation of the Associate Referee was approved by the General Referee and by Subcommittee C, and was accepted by the Association. See *This Journal*, 49, 167-172 (1966).

McClure, J. H., E. I. duPont deNemours and Company, Inc., Wilmington, Del.

McGrew, Clara, Northern Utilization Research and Development Division, U.S. Department of Agriculture, Peoria, Ill.

Middleton, H., General Electric Company, Schenectady, N.Y.

Mitchell, J., Jr., E. I. duPont deNemours and Company, Inc., Wilmington, Del.

Nemeth, J., University of Illinois, Urbana, Ill.

Nichols, J. B., E. I. duPont deNemours and Company, Inc., Wilmington, Del.

Nippoldt, B. W., Minnesota Mining and Manufacturing Company, St. Paul, Minn.

Shrader, S. A., Dow Chemical Company, Midland, Mich.

Yeh, C. S., Purdue University, Lafayette, Ind.

REFERENCES

- (1) Ogg, C. L., This Journal, 41, 294–296 (1958).
- (2) Ogg, C. L., ibid., 43, 693–694 (1960).